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ABSTRACT

In programming, the names for the program entities, especially for

the methods, are the intuitive characteristic for understanding the

functionality of the code. To ensure the readability and maintain-

ability of the programs, method names should be named properly.

Specifically, the names should be meaningful and consistent with

other names used in related contexts in their codebase. In recent

years, many automated approaches are proposed to suggest consis-

tent names for methods, among which neural machine translation

(NMT) based models are widely used and have achieved state-of-

the-art results. However, these NMT-based models mainly focus on

extracting the code-specific features from the method body or the

surrounding methods, the project-specific context and documen-

tation of the target method are ignored. We conduct a statistical

analysis to explore the relationship between the method names and

their contexts. Based on the statistical results, we propose GTNM, a

Global Transformer-based Neural Model for method name sugges-

tion, which considers the local context, the project-specific context,

and the documentation of the method simultaneously. Experimen-

tal results on java methods show that our model can outperform

the state-of-the-art results by a large margin on method name sug-

gestion, demonstrating the effectiveness of our proposed model.
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1 INTRODUCTION

During programming, developers must name variables, functions,

parameters, etc. The appropriateness of a name changes over time

during the software evolution. For example, a good function name

can degrade into a poor one when the semantics of the function

change or the function is used in a new context. Poor names make

programs harder to understand and maintain [9, 10, 17, 22, 25, 39],

leading to misuses and defects [1, 2, 8, 13]. Finding consistent names

for program constructs has always been a cynosure in the software

industry.

Methods are the most minor named units for indicating the pro-

gram behavior in most programming languages [18], thus they are

particularly important [12, 30, 32]. Meaningful and conventional

method names are vital for developers to understand the behavior of

programs or APIs. Once the name of a method is decided, it is labori-

ous to change, especially when used for an API [4]. The results from

an investigation in Liu et al. [28] indicate that among the change

history in projects, developers usually change the method names

without any change to the corresponding body code in many cases,

which suggests that programmers strive to choose meaningful and

appropriate method names, i.e., more consistent with other names

in the same project or the codebase. Especially when collaborating,

they need to obey a project’s coding conventions.

In recent years, researchers have proposed automated approaches

for suggesting consistent names for those methods. Based on the

intuition that two methods implemented with similar code in their

body code are likely to be named similarly, Liu et al. [28] proposed

an IR-based approach to detect and rename inconsistent method

names. They identify the inconsistent method names by comparing

the names retrieved from the method body vector space with those

retrieved from the method name vector space. For the inconsistent

names, their model recommends the potentially consistent names

by referring to the names of similarly implemented methods. How-

ever, in many cases, even the methods with similar body code can be

named differently because they might belong to different projects

1294

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510154&domain=pdf&date_stamp=2022-07-05


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Liu, et al.

and have different semantics. Besides, by retrieving names from

similar methods, the model cannot suggest neologisms. Allamanis

et al. [5] proposed a convolutional attentional network to extract

local time-invariant and long-range topical attention features in

the method body to suggest names for methods. To leverage the

syntactic structure of programming languages, Code2vec [7] and

Code2seq [6] represent the method body as a set of compositional

abstract syntax tree (AST) paths and use the path representation to

predict the method’s name. Nguyen et al. [34] proposed MNire, a

simple but effective approach to recommend a method name and

detect method name inconsistencies. They treated the method name

generation task as an abstractive summarization of the tokens of

the program entities’ names in the method body and the enclosing

class name. Li et al. [24] developed DeepName, a context-based

approach for method name consistency checking and suggestion.

They extract the features from four contexts: the internal context,

the caller and callee contexts, sibling context, and enclosing context.

The above state-of-the-art models mainly focus on exploiting

code-specific features from the method body or the surrounding

methods in the same program file, which can be considered as lo-

cal contexts of a method. However, the information of the whole

project (global context) is ignored in these models. For example,

the documentation of the method can describe the method’s func-

tionality and the role it plays in the project. Besides, there also

exist nested scopes for project, where a source code file can have

references to other files of the same projects. Thus, the contexts

from other program files which are imported by the file where

the target method in are also helpful in understanding the meth-

ods. Intuitively, these contexts are of great importance for method

name recommendation, especially for the methods which have little

content in the body, but with sufficient global contexts. A method

does not exist in isolation, a large number of associations can be

found among the project-specific contexts and the documentation:

(1) The functionality and naming convention of a method can be

better understood when more contextual features are provided. (2)

There might be many possible names that can match the semantic

of the method. By referring to the global contextual information,

the solution space of the method names can be narrowed. Thus,

when recommending a method name, it is necessary to refer to

the global contexts. It can help in following situations: when the

method is first created, existing global context can be accessed for

suggesting a proper name for it; during the code refinement, the

global context can be used to suggest an alternative name if the

current name is inconsistent.

To verify our intuition, we first conducted a statistical analysis

to learn the relation between the method names and their contexts

of different levels. Based on the statistical analysis results, we pro-

pose GTNM, a novel Global Transformer-based NeuralModel for

method name suggestion, aiming at generating meaningful and con-

sistent names for methods. We treat the method name suggesting

task as the abstractive text summarization, where the tokens from

the contexts of different levels are considered as input, and the sub-

tokens in the method’s name is considered as the target summary

of input sequences. We use the attention mechanism to allow the

model to attend to different contexts during the decoding process.

The main contribution of our model can be summarized as fol-

lows:

• We conduct a statistical analysis to explore the relationship

between the method names and their contexts of different

levels.

• We propose a novel global approach for method name sug-

gestion, which considers the local context, the project-level

context, and the documentation of the method simultane-

ously.

• We conduct extensive experiments to evaluate our approach

on the large-scale datasets of Javamethods. The experimental

results show that our model substantially improves the per-

formance of the previous approaches on suggesting method

names.

2 MOTIVATING EXAMPLE AND STATISTICAL
ANALYSIS

According to Nguyen et al. [34], the principle of naturalness of

software [16] also holds for the tokens composing the names of

program entities. Specifically, tokens are repetitive and occur in

regularity, where the repetitiveness can be captured by statisti-

cal models trained on a large code corpus. Therefore, the tokens

composing the names of program entities can reflect the seman-

tic and functionality of the code snippets. Based on this evidence,

most previous work mainly considers the associations among the

tokens of the method names and the tokens in the method body

(local context). However, only considering the local context is not

sufficient. We assume that the project-specific context can better

reflect the role that the target method plays in the whole project.

For example, the methods in the same file with the target method

(we call them in-file contextual methods) and the methods in other

program files of the same project that are imported by the file

where the target method locates (we call them cross-file contextual

methods). Besides, the documentation of the method also plays an

important role in recommending the method names. We present

several java method examples to illustrate the associations among

method names and the project-specific and documentation contexts

in Section 2.2, appearing as the token overlapping. Based on those

observations, we conduct a statistical analysis to explore the rela-

tionship between the method names and the contexts of different

levels in Section 2.3, i.e., local context, project-specific context, and

documentation context.

2.1 Definitions

Firstly, we give a brief definition of tokens, local context, project-

specific context, and documentation context.

Definition of Tokens. For programs, we parse the program to AST

and extract entities (method names, identifiers, parameters, return-

types) from AST. Then we split the entities following camelcase

and underscore naming conventions, and lowercase the entities

to get tokens. For documentation, we extract the first sentence in

Javadoc by deleting the punctuations. Then we split the sentence

with space to get words and lowercase the words to get tokens.

Definition of Local Context. Local-context contains the program

entities in the method signature and body, including parameters,

return type, and identifiers.

Definition of Project-specific Context. Project-specific context

is supposed to reflect the target method’s role in the whole project
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and the naming styles. We argue that the methods in the same file

with the target method (we call them in-file contextual methods)

and the methods in other program files of the same project that are

imported by the file where the target method (we call them cross-

file contextual methods) in can provide the above information. We

consider the name of the contextual methods as the project-specific

context.

Definition of Documentation Context. The first sentence of the

code documentation is informative, and many code summarization

approaches use it as a code summary [19, 23, 43]. Following them,

we use the tokens in the first sentence as the documentation context.

2.2 Motivating Example

1. The project-specific context might contain the entities that can

provide semantic information for the target method name recom-

mendation. In Code 1, the names of the third method (getMaxValue)

do not describe the functionality of the methods well. When chang-

ing it into a more precise name that contains the project-related

entity names (getMaximumResourceCapability), only referring to

the method body is not enough. If the (in-file) project-level con-

textual information, i.e., other methods in the same file, can be

accessed, we can easily realize that the method is related to the

resource capability and make correct revisions.

p u b l i c Resource g e tC l u s t e r R e s o u r c e ( ) {
r e t u r n c l u s t e r R e s o u r c e ;

}
p u b l i c Resource ge tMin imumResourceCapab i l i t y ( ) {

r e t u r n minimumAllocat ion ;
}
/ / c o n s i s t e n t name : ge tMax imumResourceCapab i l i ty
p u b l i c Resource getMaxValue ( ) {

r e t u r n maximumAllocat ion ;
}

Code 1: Project-specific context contains the entities that can

provide semantic information

2. The project-specific contextual information can imply the

logic and the functionality of the project, which will reflect the role

the target method plays in the project. In Code2, these methods

are related to the window events, including the keypress events or

trackpad touch events. By accessing the (in-file) project-level con-

text, the functionality of the whole project and the role of the target

method can be better understood, thus offering more knowledge

for recommending meaningful method name.

pu b l i c boo l ean touchDown ( Inpu tEven t event , f l o a t x , f l o a t y , i n t
po in t e r , i n t bu t ton ) {

. . .
}
p u b l i c vo id touchUp ( Inpu tEven t event , f l o a t x , f l o a t y , i n t

po in t e r , i n t bu t ton ) {
. . .

}
p u b l i c boo l ean keyDown ( Inpu tEven t event , i n t keycode ) {

r e t u r n i sModa l ;
}
p u b l i c boo l ean keyUp ( Inpu tEven t event , i n t keycode ) {

r e t u r n i sModa l ;
}

Code 2: project-specific contexts imply the logic and the

functionality of the project.

3. There might be many semantically consistent names that can

reflect the function of a specific method.We can narrow the solution

space and suggest a consistent and conventional method name by

referring to the project-specific contextual information. Both of the

two methods in Code3 indicate that some errors are encountered.

However, different verbs are used in the names (“Encountered” and

“Occured”), and they are synonyms. Although these two names are

both semantically correct, they are not consistent.When refactoring

the second method name “serverErrorOccured” into a name that

is consistent with the contextual methods, we can use the verb

“Encountered” to replace “Occured” by referring to the previous

method name “clientErrorEncountered”. This suggests that with

the help of the project-level context, we can choose the candidate

names from a smaller and specific solution space.

p u b l i c vo id c l i e n t E r r o r E n c o un t e r e d ( ) {
c l i e n t E r r o r s . i n c r ( ) ;

}
/ / c o n s i s t e n t name : s e r v e rE r r o rEn coun t e r e d
p u b l i c vo id s e r v e rE r r o rOc cu r ed ( ) {

s e r v e r E r r o r s . i n c r ( ) ;
}

Code 3: Semantically consistent names

4. Cross-file project-specific context can provide extra infor-

mation when the in-file context is less informative. In code4, the

AccountActivity class inherits from BaseActivity class, thus the

methods of the parent class BaseActivity might be overridden in

AccountActivity class, for example, getLayoutRes(), onCreateActiv-

ity(), etc. The program file where the BaseActivity class defined is

imported at the beginning of the file. Thus, we can extract the meth-

ods defined in the BaseActivity class by considering the cross-file

project-specific contexts. Thus, when predicting the method name

for the methods in AccountActivity class, the methods defined in its

parent class can be accessed, which are helpful for the cases where

the in-file context is less informative for inferring the method name.

[ Ac coun tAc t i v i t y . j a v a ]
. . .
impor t com . g i t hub . a i r s a i d . accountbook . base . B a s eA c t i v i t y ;
. . .
p u b l i c c l a s s Ac coun tAc t i v i t y ex t end s B a s eA c t i v i t y {

@Override
p u b l i c i n t ge tLayou tRes ( ) {

r e t u r n R . l a y ou t . a c t i v i t y _ a c c o u n t ;
}
@Override
p u b l i c vo id onC r e a t eA c t i v i t y ( @Nul lab le Bundle

s a v e d I n s t a n c e S t a t e ) {
Account account = g e t I n t e n t ( ) . g e t P a r c e l a b l e E x t r a (

AppConstants . EXTRA_DATA) ;
. . .

}
. . .

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ B a s eA c t i v i t y . j a v a ]
p u b l i c a b s t r a c t c l a s s B a s eA c t i v i t y ex t end s S l i d e B a c kA c t i v i t y {

@Override
p r o t e c t e d vo id onCrea te ( @Nul lab le Bundle s a v e d I n s t a n c e S t a t e ) {
. . .
}
. . .
p u b l i c a b s t r a c t i n t ge tLayou tRes ( ) ;
p u b l i c a b s t r a c t vo id onC r e a t eA c t i v i t y ( @Nul lab le Bundle

s a v e d I n s t a n c e S t a t e ) ;
}

Code 4: Cross-file project-specific context can provide extra

information when the in-file context is less informative

5. The documentation can also provide rich information about the

methods, which will help for suggesting method names. In Code5,

the body code of these methods looks similar, and all of them cannot

offer enough information for suggesting the method name. The
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Figure 1: The overall framework of GTNM.

documentation of the methods contains useful information that can

reflect the functionality of the methods, thus being helpful for the

method name recommendation. When predicting the name for the

first method, the documentation can provide a useful indication.

/ ∗ ∗
∗ Used to r e t r i e v e the p l ug i n t o o l ' s d e s c r i p t i v e name . ∗ /
/ / c o n s i s t e n t name : ge tDes c r i p t i v eName
@Override
p u b l i c S t r i n g getName ( ) {

r e t u r n " Remove Spurs ( prunning ) " ;
}
/ ∗ ∗
∗ Used to r e t r i e v e a s ho r t d e s c r i p t i o n o f what the p l ug i n t o o l

does . ∗ /
@Override
p u b l i c S t r i n g g e t T o o lD e s c r i p t i o n ( ) {

r e t u r n " Removes the spu r s ( prunning op e r a t i o n ) from a Boolean
image . " ;

}

Code 5: The documentation can provide rich information

about the methods.

2.3 Statistical Analysis

Based on the above observations, we conduct a statistical analysis to

explore the relationships between the method names and their con-

texts by computing the percentage of their token sharing. For the

analysis, we used the java programs in the Java-small dataset used

in Alon et al. [6]. The dataset contains 11 high quality open-source

java projects, which is a benchmark dataset for method name sug-

getstion task. It contains about 700K Java method examples. Thus,

we use this dataset to conduct the statistical analysis to explore the

relationships between the method names and their contexts. The

statistical results in this analysis can be expected in a good project

where most of the names are consistent.

For local context, we found that the tokens of 67.47% of the

method names can be found in the identifiers, and 35.64% can be

found in the return type and parameters. For Project-specific con-

text, we found that the tokens of 85.98% of the method names can be

found in the names of its in-file contextual methods, and the tokens

of 53.83% of the method names can be found in the names of its

cross-file contextual methods. For the documentation context, we

found that the tokens of 55.98% of the method names can be found

in its documentation. There exists overlapping among different con-

texts, for example, the subtokens of the method name can appear in

both local and documentation contexts. Thus, the sum of these num-

bers is not 100%. Besides, 10.87% of the method names cannot found

in the body, but occur in the names of its project-specific context

(in- and cross-file contextual methods). These results demonstrate

that developers always refer to the project-specific context when

naming the methods. Thus, project-specific context also contains

essential information for method name recommendation, which

should be carefully considered.

3 PROPOSED MODEL

3.1 Overview

In this work, we propose GTNM, a global Transformer-based Neu-

ral Model for method name recommendation aiming at generating

meaningful and consistent method names. The overall architecture

of our approach is shown in Figure 1. To fully utilize the contex-

tual information of a method, we firstly extract context from three

different levels given the target method and the project, including

the local context, project-specific context, and documentation con-

text. We employ a transformer-based seq2seq framework [41] to

generate the method name. Specifically, we build corresponding

encoders to encode the contexts into vector representations. The

decoder generates the target method name by sequentially predict-

ing the probability of the subtokens 𝑦𝑡+1 in the method name based
on the contextual representations produced by the encoders, and

the previous predicted subtokens 𝑦1, 𝑦2, ..., 𝑦𝑡 . We use the attention
mechanism to allow the model to attend to different contexts during

the decoding process.

3.2 Context Extraction

We extract the contexts of three different levels for generating

meaningful and consistent names for the method, including lo-

cal context, project-specific context, and documentation. Figure 2

shows an example of the contexts for the Java method “getElement”.

Local Context Extraction According to the results of our statisti-

cal analysis and to represent the method body succinctly, we extract

the following code entities as the local contexts for the method: (1)

identifiers; (2) parameters; (3) return type. We tokenized each of the

names from the local contexts following camelcase and underscore

naming conventions, then normalized the tokens to lowercase. Fi-

nally, all the subtokens are concatenated in the order that they

occurred in the source code to form the sequential representation

of the local feature.
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...
import DataStructures.Heaps.Heap;

public class MaxHeap implements Heap {
 ...
  /**
   * Get the element at a given index. The key for the list is equal to index value - 1
   */
  public HeapElement getElement ( int elementIndex ) {
    if ((elementIndex <= 0) || (elementIndex > maxHeap.size()))
      throw new IndexOutOfBoundsException("Index out of heap range");
    return maxHeap.get(elementIndex - 1);
  }

// Get the key of the element at a given index
  private double getElementKey(int elementIndex) {
    return maxHeap.get(elementIndex - 1).getKey();
  }

// Swaps two elements in the heap
  private void swap(int index1, int index2) {
    HeapElement temporaryElement = maxHeap.get(index1 - 1);
    maxHeap.set(index1 - 1, maxHeap.get(index2 - 1));
    maxHeap.set(index2 - 1, temporaryElement);
  }
 ...
  @Override
  public void insertElement(HeapElement element) {
   ...
  }

  @Override
  public void deleteElement(int elementIndex) {
    ...
  }
 ...

package DataStructures.Heaps;

public interface Heap {

  /**
   * @return the top element in the heap, the one with lowest key for min-heap or with 
the highest
   */
  HeapElement getElement() throws EmptyHeapException;

  /**
   * Inserts an element in the heap. Adds it to then end and toggle it until it finds its 
right position.
   */
  void insertElement(HeapElement element);

  /**
   * Delete an element in the heap.
   */
  void deleteElement(int elementIndex);
}

Heap.java

MaxHeap.java

get the element at a given index the key 
for the list is equal to index value - 1

Documentation Context

/
* Get the element at a given index. The key for the list is equal to index value - 1
*/

Element index max heap 
size index out of 
bounds exception ...

Identifiers

heap 
element

Return Type

int element 
index

e Parametersd ifi

Local Context

...
get element key
swap
insert element
delete element
...

In-file Project-specific Context

...
get element
insert element
delete element
...

cross-file Project-specific Context

Figure 2: Different levels of contexts for method name suggestion.

Project-specificContext ExtractionWedefine the project-specific

context of one method as its in-file methods (other methods in the

same file with the target method) and cross-file contextual methods

(methods in the files imported by the file containing the target

method). For simplicity and efficiency, we extract the name of the

contextual methods as the project-specific context. Then we per-

form a similar process to these names as to local context. The

concatenation of the lower-cased subtokens serves as the represen-

tation of the project-specific feature.

Documentation Context Extraction For each method with a

comment, to get its documentation context, we extract the first

sentence that appeared in its Javadoc description since it typically

describes the functionalities of the method1. Then we delete the

punctuations and split the sentence with space to get words and

lowercase the words. All the words are concatenated to form the

documentation context.

3.3 Global Transformer-based Neural Model

We use a transformer-based model to generate the method name,

which leverages the self-attention mechanism and can capture rich

semantic dependencies. The Transformer consists of stacked self-

attention and point-wise, fully connected layers. The multi-head

attention mechanism is performed in the self-attention layers. In

each attention head, given the input vectors 𝒙 = (𝒙1, 𝒙2, ..., 𝒙𝑛), the
output vectors 𝒐 = (𝒐1, 𝒐2, ..., 𝒐𝑛) is computed as:

𝒐𝑖 =
𝑛∑

𝑗=1

𝛼𝑖 𝑗 (𝒙 𝑗𝑾
𝑉 )

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑𝑛

𝑘=1 exp(𝑒𝑖𝑘 )

𝑒𝑖 𝑗 =
𝒙𝑖𝑾𝑄 (𝒙 𝑗𝑾𝐾 )𝑇

√
𝑑𝑘

(1)

1http://www.oracle.com/technetwork/articles/java/index-137868.html

where𝑾𝑄 ,𝑾𝐾 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑾𝑉 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 are the trainable

parameters that are unique per layer and per attention head. Then

the outputs of all the heads are concatenated to produce the final

output of the self-attention layer.

After the attention layers of both encoder and decoder, a fully

connected feed-forward network is employed:

𝐹𝐹𝑁 (𝒙) =𝑚𝑎𝑥 (0, 𝒙𝑾1 + 𝒃1)𝑾2 + 𝒃2 (2)

where𝑾1 ∈ R
𝑑𝑚𝑜𝑑𝑒𝑙×4𝑑𝑚𝑜𝑑𝑒𝑙 ,𝑾2 ∈ R

4𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝒃1 ∈ R4𝑑𝑚𝑜𝑑𝑒𝑙 ,

𝒃2 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 are the trainable parameters.

Encoders.We build a Code Encoder to encode the whole context 𝑥
including the local context, project-specific context, and documen-

tation for the method name generation, and build an extra Project

Context Encoder to encode the project context 𝑥𝑝𝑟𝑜 for enhancing
the attention to the project-specific context.

i) Code Encoder. The local context, project-specific context and the

documentation context are first embedded into vectors 𝒙𝑙𝑜𝑐 , 𝒙𝑝𝑟𝑜 ,
𝒙𝑑𝑜𝑐 , then these vectors are concatenated to form the representation

of the whole contexts 𝒙 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝒙𝑙𝑜𝑐 , 𝒙𝑝𝑟𝑜 , 𝒙𝑑𝑜𝑐 ), where |𝒙 | =
|𝒙𝑙𝑜𝑐 | + |𝒙𝑝𝑟𝑜 | + |𝒙𝑑𝑜𝑐 |. Then we employ transformer-based encoder
to encode 𝒙 into hidden representation 𝒉 = (𝒉1,𝒉2, ...,𝒉 |𝒙 | ).

ii) Project-specific Encoder. To increase the attention for the

project-specific context, especially for the method names where

the target method invoked, we build a Project-specific Encoder to

encode the project-specific context 𝒙𝑝𝑟𝑜 into hidden representation

𝒉𝑝𝑟𝑜 = (𝒉
𝑝𝑟𝑜
1 ,𝒉

𝑝𝑟𝑜
2 , ...,𝒉

𝑝𝑟𝑜
|𝒙𝑝𝑟𝑜 |

). We use a mask vector 𝑴 ∈ R |𝒙𝑝𝑟𝑜 |

to record the methods that are invoked by the local context.𝑀𝑖 is 1

if the 𝑖-th method in the project-specific context is invoked by the
local context else is 0.

Intuitively, the methods in the project-specific context invoked

by the local context are more important and relative to the target

method. Thus we give these methods more attention by multiplying

the invoked weight𝒘 on the project-specific hidden vector 𝒉𝒑𝒓𝒐 to
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Table 1: Statistics of the datasets.

Train Validation Test

Files 1,700,000 393,327 61,000

Methods 18,230,509 4,283,580 636,816

Methods with doc 4,264,852 964,078 143,913

produce the final project-specific hidden vector 𝒉̃𝑝𝑟𝑜 :

𝒘 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (1 +𝑴)

𝒉̃𝑝𝑟𝑜 = 𝒘 ⊗ 𝒉𝑝𝑟𝑜
(3)

where ⊗ is the element-wise production operation.

Decoder. The decoder aims to generate the target method name

by sequentially predicting the subtoken 𝑦𝑡+1 conditioned on the

context vectors 𝒉 and 𝒉̃𝑝𝑟𝑜 , and the previous generated subtokens
𝒚1:𝑡 :

𝑝 (𝑦𝑡+1) = softmax(𝐹𝐹𝑁 (𝒅𝒆𝒄2))

𝒅𝒆𝒄2 = Attention-Layer3(𝒉, 𝒅𝒆𝒄1)

𝒅𝒆𝒄1 = Attention-Layer2(𝒉̃𝑝𝑟𝑜 , 𝒅𝒆𝒄)

𝒅𝒆𝒄 = Attention-Layer1(𝒚1:𝑡 )

(4)

where the first attention layer performs multi-head attention over

the decoder input 𝑦1:𝑡 to produce the hidden representation 𝒅𝒆𝒄 .
Then the second attention layer performs multi-head attention over

the weighted project-specific hidden vector 𝒉̃𝑝𝑟𝑜 to produce the
hidden representation 𝒅𝒆𝒄1, which models the dependency between
the decoder input and the project-specific context. The last attention

layer performs multi-head attention over the whole context hidden

vector 𝒉 to produce the final hidden representation 𝒅𝒆𝒄2, which
models the dependency between the decoder input, project-specific

context, and thewhole context. Then the final hidden representation

is fed into a fully connected feed-forward network and softmax

layer to produce the probability of the next subtoken 𝑦𝑡+1 for the
target method name.

Training. To train the network, we adopt cross-entropy loss be-

tween the predicted distribution 𝒒 and the “true” distribution 𝒑,
which is computed as:

𝐻 (𝒑 | |𝒒) = −
∑

𝑦∈𝑌

𝑝 (𝑦) log𝑞(𝑦) = − log𝑞(𝑦𝑡𝑟𝑢𝑒 ) (5)

where 𝑦𝑡𝑟𝑢𝑒 is the target name. Since p will assign value of 1

to the actual label in the training example and 0 otherwise, the

cross-entropy loss for a example is equivalent to the negative log-

likelihood of the true label. As 𝑞(𝑦𝑡𝑟𝑢𝑒 ) tends to 1, the loss ap-
proaches zero. The smaller 𝑞(𝑦𝑡𝑟𝑢𝑒 ) goes, the greater the loss be-
comes. Thus, minimizing this loss is equivalent to maximizing the

log-likelihood that the model assigns to the true labels.

4 EXPERIMENTAL SETUP

4.1 Datasets

We train and evaluate GTNM on Java programs following MNire

[34] and Code2vec [7]. Nguyen et al. [34] provide the list of java

repositories, which contains 10K top-ranked, public Java projects

on GitHub. They used the same setting as in code2vec to shuffle

files in all the projects and split them into 1.7M training and 61K

Table 2: Statistics of contexts and target name lengths.

Avg Med

In-file Contextual Method 1399 68

Cross-file Contextual Method 197 80

Variables 23 7

Parameter and return type 3 3

Target Names 3 2

testing files. Following their setting, we download the repositories

they provide and follow the same way to build the dataset. After

data processing, the detailed data information is shown in Table 1.

4.2 Metrics

To evaluate the quality of the generated method name, we adopted

the metrics used by previous works [6, 7, 34], which measured

Precision, Recall, and F-score over sub-tokens. Specifically, for the

pair of the target method name 𝑡 and the predicted name 𝑝 , the
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡, 𝑝), 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑡, 𝑝), and 𝐹1(𝑡, 𝑝) score are computed as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡, 𝑝) =
|subtoken(t) | ∩ |subtoken(p) |

|subtoken(p) |

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑡, 𝑝) =
|subtoken(t) | ∩ |subtoken(p) |

|subtoken(t) |

𝐹1(𝑡, 𝑝) =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡, 𝑝) × 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑡, 𝑝)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡, 𝑝) + 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑡, 𝑝)

(6)

where subtoken(𝑛) return the subtokens in the name 𝑛. Precision,
Recall, and F-score of the set of the suggested names are defined as

the average ones on all samples. Besides, we also measure the Exact

Match Accuracy (EM Acc), in which the order of the subtokens are

also taken into consideration.

4.3 Implementation Details

We use Transformer with 6 layers, hidden size 512, and 8 attention

heads for both encoders and decoders. The inner hidden size of the

feed-forward layer is 2048. We use javalang2 to parse the java code

to extract the contexts. The details of different contexts and target

names (subtoken) lengths are shown in Table 2.

In our experiments, we set the in-file project-specific context

length to 30, the cross-file project-specific context length to 30, the

local context length to 55 (variable length (50) + parameter and

return type length (5)), the documentation context length to 10.

And the maximum target name length is set to 5 3. We use the same

vocabulary for the input source code and the target method name

and build another vocabulary for the documentation context. The

vocabulary size for the source code is set to 20,000, and the vocabu-

lary size for documentation is set to 10,000. The out-of-vocabulary

tokens are replaced by 〈UNK〉. To demonstrate the effectiveness
of the cross-file project-specific context, we conduct experiments

under the cross-project setting where the programs used in the

training and test process are from different projects. Since more

contexts can be accessed, we assume that we can use fewer pro-

grams to train the model. To verify the assumption, we train the

2https://github.com/c2nes/javalang
3we examined model’s performance with different context length settings, the setting
that can achieve the best results were used for the final training
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Table 3: Method name recommendation comparison results.

Model Precision Recall F1 EM Acc

code2vec[7] 51.93% 39.85% 45.10% 35.59%

code2seq[6] 68.41% 60.75% 64.36% 41.50%

MNire[34] 70.10% 64.30% 67.10% 43.10%

DeepName[24] 73.60% 71.90% 72.70% 44.30%

GTNM 77.01% 74.15% 75.60% 62.01%

model using a subset of the whole training dataset and compare it

with the results without using the cross-file project-specific context.

The detailed results are presented in 5.3.

We use Adam with the learning rate of 3e-4, linear learning rate

warmup schedule over the first 4,000 steps to train the model for

20 epochs. We use a dropout probability of 0.3 on all layers. Our

model is trained on one Tesla V100 GPU with 16GB memory.

5 RESEARCH QUESTIONS AND RESULTS

To evaluate our proposed approach, in this section, we conduct

experiments to investigate the following research questions:

5.1 RQ1: Comparison against state-of-the-art
models

We compare GTNM with the following state-of-the-art method

name suggestion models:

1) code2vec [7]: an attention-based neural model, which performs

attention mechanism over AST paths and aggregates all of the path

vector representations into a single vector. They considered the

method name prediction as a classification problem and predicted

a method’s name from the vector representation of its body.

2) code2seq [6]: an extended approach of code2vec, which employs

seq2seq framework to represent AST paths of the method body

node-by-node using LSTMs and then attend to them while generat-

ing the target subtokens of the method name.

3) MNire [34]: an RNN-based seq2seq model approach to suggest a

method name based on the program entities’ names in the method

body and the enclosing class name.

4) DeepName [24]: an RNN-based approach formethod name consis-

tency checking and suggestion, using both internal and interaction

contexts for method name consistency checking and suggestion,

which achieves the state-of-the-art results on java method name

suggestion task.

The first three baselines do not use the cross-file project-specific

context for the method name suggestion. To make the comparison

fair, we do not use the cross-file project context in this experiment.

We use the same dataset as MNire and DeepName to train our

model. For code2vec and code2seq, we download their publicly

available source code and train their model on the same datasets.

The results are shown in Table 3. Among these baselines, code2vec

and code2seq only use the context in the method body to predict

the method names. MNire utilizes the enclosing class (where the

method is in) contexts, and DeepName further considers the inter-

action context and sibling context, which might appear in other

program files.

The results show that GTNM outperforms all the baseline models

on all the metrics by a large margin, especially on the exact match

Table 4: Examples where the exact match did not occur but

F1 was good.

Prediction Ground Truth

‘before’, ‘attach’, ‘primary’, ‘storage’ ‘before’, ‘detach’, ‘primary’, ‘storage’

‘reset’, ‘buffer’ ‘reset’

Table 5: Performance of using different contexts.

Model Precision Recall F1 EM Acc

Token seq 70.25% 64.75% 67.39% 49.44%

Local cxt 69.60% 64.38% 66.89% 50.95%

+ In-file Project cxt 75.16% 71.83% 73.46% 59.51%

+ Documentation cxt 77.01% 74.15% 75.60% 62.01%

accuracy. The higher exact match accuracy indicates the generated

name is more close to the ground truth. Table 4 shows two examples

where the exact-match didn’t occur but F1 was good. In the first

case, the semantics of two names are reverse although they shared

most of the sub-tokens with a high F1 score. Thus, exact match

accuracy can evaluate the generated name more precisely, which

plays a crucial role in method name suggestion. There are 32% of

the test methods where exact match is not satisfied but F1 ≥ 0.5.

Among these cases, only 2.32% of methods have the same subtoken

set between generated names and target name.

Although MNire and DeepName also consider the contexts be-

yond the method body, the contexts extracted by their approaches

are different from ours. They only consider the contexts directly

interacting with the target method, such as the sibling methods,

callers methods, and callees methods. However, the methods which

have no explicit interaction with the target methods can also pro-

vide essential information for understanding the functionality of the

target method. For example, the methods appeared in the imported

files, as shown in our previous motivation examples. Besides, MNire

and DeepName use an RNN-based model to learn the relationship

among the entities in the context. In our model, we extract contexts

from a larger set of program entity candidates and employ a pow-

erful backbone model to model the contexts, which is based on the

self-attention mechanism. Besides, we also give the project-specific

contexts more attention weights by applying invoked weight ma-

trix. When generating the names of the target method, different

decoder layers are utilized to focus on the contexts of different lev-

els. Thus, our model can achieve better performance than baseline

models.

Among these metrics, the exact match accuracy is much more

strict than the other three metrics, which calculates the percentage

of the predicted method names that are exactly the same as the

ground truth. The other three metrics are based on the subtoken

overlapping between the predicted names and the target names,

where the order of the subtokens is ignored. The results show that

our model obtains larger improvements on exact match accuracy

and recall, which further demonstrates that the subtokens in the

predicted names generated by our model can cover much more

target subtokens than the other baselines. Therefore our model can

fully and precisely describe the functionality of the method body.
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Table 6: The results on the extracted documented methods.

Model Precision Recall F1 EM Acc

GTNM 85.36% 82.54% 83.93% 70.60%

- doc 80.31% 76.65% 78.44% 64.14%

5.2 RQ2: The contributions of contexts in the
same file

In the previous experiment, we consider contexts of the same file

(i.e., local context, in-file project-specific context, and documen-

tation context) for generating the method name. To answer this

research question, we conduct experiments using different context

combinations. As shown in Table 5, the first row shows the results

of only taking the source code token sequence in the method body

as input. The second row presents the result of using the local con-

text (i.e., the entities’ names of the method signature and variables)

as input to suggest the method name. The third row shows the

results of using both the in-file project-specific context and local

context. The last row gives the results of using all three contexts:

local, in-file project-specific, and documentation context.

As seen from Table 5, comparing the results of using local con-

text (sequence length is 55) with the results of using source code

token sequence (sequence length is 200), the performance is compa-

rable, and using the local context can achieve higher exact match

accuracy. However, the length of the local context is much shorter

than the source code token sequence, which demonstrates that the

local context extracted by our model contains enough information

about the functionality of the method body, and the shorter context

can improve the computational efficiency of the model. When we

further incorporating the project-specific context information, the

performance is improved by a large margin. Specifically, the F1

score and exact match accuracy significantly increase from 66.89%

and 50.95% to 73.46% and 59.51%. The substantial improvement

shows that the project-specific context, which can offer knowl-

edge about the project information, is essential and efficient for

improving the performance of method name recommendation.

When the documentation information is added, the performance

is further improved. However, in our whole dataset, only about

20% of the methods have the document information. Thus, for

most of the methods, the documentation context information is

missing. To directly illustrate the contribution of the documentation

context information, we extract those documented methods from

the whole dataset and present the results on the extracted dataset.

As shown in Table 6, the first row shows the results of our full

model on the extracted dataset, and the second row shows the

results of removing the documentation context from the input.

When removing the documentation context, the performance is

decreased by 5.1 in precision, 5.9 in recall, 5.5 in F1, and 6.5 in

exact match accuracy, respectively. The results demonstrate that

the documentation context can provide useful information for the

method name suggestion.

5.3 RQ3: The contribution of cross-file context

When considering the cross-file project-specific context, we need

to preserve the project structure of the programs in the dataset.

Since more contextual information can be accessed, we assume that

Table 7: Performance of using cross-file project-specific con-

text under cross-project and low-resource setting.

Model Precision Recall F1 EM Acc

w/o cross-file cxt 67.25% 64.66% 65.93% 49.71%

w/ cross-file cxt 73.52% 70.65% 72.06% 60.69%

the model can be trained in a low-resource setting, that is, fewer

programs are needed for training the model. Thus, we only use

a subset of the whole training dataset in this experiment. Specifi-

cally, we sample 4000 projects from the big training set as a small

training set and extract the cross-file project-specific context for

the programs in the sampled projects. We compare with the results

of our model setting without using project-specific context. To fur-

ther demonstrate the effectiveness of the cross-file project-specific

context, we conduct the experiment under the cross-project setting.

That is, we split the corpus based on the projects instead of files or

the methods. The cross-project setting is challenging and reflects

better the real-world usage of the method name recommendation

where the model is trained on the set of existing projects and used

to check for a new project.

The results are shown in Table 7. As seen from the results, with

the help of cross-file project-specific context, our model can achieve

comparable results with the results of the previous model setting,

where the training set is bigger and in-project split, only using

less than 50% of the whole training set and under the challenging

cross-project experimental setting. When removing the cross-file

project-specific context, the performance of the model drops a lot,

which further demonstrates the importance of the cross-file project-

specific context.

6 DISCUSSION

6.1 Qualitative Analysis

We perform qualitative analysis on the human-written method

names and method names which are automatically generated by

GTNM. In most cases, the names generated by GTNM are exactly

the same as the human-written names. To figure out in what cases

our model generates different names with human, we randomly

sample 200 cases where the names generated by our model are

different from the ground truth from the test to analyze the results.

Following McBurney and McMillan [31] and Hu et al. [20], we

performed qualitative analysis to obtain opinions from participants

on the quality of the generated-name, aiming at getting the feedback

on our approach and directions for future-work. We invited 8 vol-

unteers with 3-5 years of Java development experience to evaluate

the generated names of the sampled 200 cases in the form of a ques-

tionnaire. Each participant is asked to answer several questions, in-

cluding whether the human-written-names or generated-names are

good, what are the differences between two names, etc. According

to the questionnaire results, we summarize top-4 representative sit-

uations (The proportion of each situation is 19.4%/43.6%/6.6%/11.9%)

as shown in Table 8.

Contain More Detailed Information. As shown in method 1,

human just names the method as “add”. What and when to add

is not given. The human-written method name is very short and

cannot reflect the detailed role of the target method. In cases like
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Table 8: Examples of generated summaries given Java methods.

Examples

Method 1

/ ∗ ∗

∗ Adds a path ( but not the l e a f f o l d e r ) i f i t does not a l r e a d y e x i s t . ∗ /

p r o t e c t e d vo id ____ ( L i s t < S t r i ng > path , i n t depth )

{

i n t p a r e n t S i z e = path . s i z e ( ) − 1 ;

S t r i n g name = path . g e t ( depth ) ;

F o l d e r c h i l d = g e tCh i l d ( name ) ;

i f ( c h i l d == n u l l )

{

c h i l d = new Fo l d e r ( name ) ;

. . .

}

Human-written "add"

GTNM "add", "path", "if", "not", "exists"

Method 2

/ ∗ ∗

∗ Append the l ong s in the a r r ay to the s e l e c t i o n , each s e p a r a t e d by a comma ∗ /

p r i v a t e vo id ____ ( long [ ] o b j e c t s ) {

f o r ( i n t i = 0 ; i < o b j e c t s . l e ng t h ; i ++ ) {

s e l e c t i o n . append ( o b j e c t s [ i ] ) ;

i f ( i != o b j e c t s . l e ng t h − 1 ) {

s e l e c t i o n . append ( ' , ' ) ;

}

}

}

Human-written "join", "in", "selection"

GTNM "append", "selection"

Method 3

/ ∗ ∗

∗ C a l c u l a t e s the De f i n i t i onUs eCove r ag e f i t n e s s f o r the g iven DUPair on the

g iven Ex e c u t i o nR e s u l t ∗ /

p u b l i c doub le ____ ( ) {

i f ( i s S p e c i a l D e f i n i t i o n ( g o a l D e f i n i t i o n ) )

r e t u r n c a l c u l a t eU s e F i t n e s s F o rComp l e t e T r a c e ( ) ;

doub le d e f F i t n e s s = c a l c u l a t eD e f F i t n e s s F o rComp l e t e T r a c e ( ) ;

i f ( d e f F i t n e s s != 0 )

r e t u r n 1 + d e f F i t n e s s ;

r e t u r n c a l c u l a t e F i t n e s s F o r O b j e c t s ( ) ;

}

Human-written "calculate", "d", "u", "fitness"

GTNM "calculate", "fitness", "for"

Method 4

/ ∗ ∗

∗ V a l i d a t e removal o f i n v a l i d e n t r i e s . ∗ /

p u b l i c vo id ____ ( ) {

R igh tThreadedB inaryTree < I n t e g e r > b t =

new Righ tThreadedB inaryTree < I n t e g e r > ( ) ;

a s s e r t F a l s e ( b t . remove ( 9 9 ) ) ;

b t = bu i l dComp le t e ( 4 ) ;

a s s e r t F a l s e ( b t . remove ( 9 9 ) ) ;

a s s e r t F a l s e ( b t . remove ( −2 ) ) ;

}

Human-written "test", "invalid", "removals"

GTNM "test", "remove", "invalid"

this, GTNM tends to generate a longer name that contains more in-

formation about the method’s functionality. In this example, GTNM

suggests a more detailed name “add path if not exists”, which indi-

cates that the object and the usage scenario of the target method.

Our model can learn this detailed information from the documen-

tation, parameters, and the method body. In the whole test set, 25%

of the wrong cases belong to this situation.

Synonyms. As shown in method 2, the human-written name and

the name generated by our model have the same meaning, and

the verbs used in these two names are synonyms (“join in” and

“append”). Since “join in” is not as often used as “append” in the

method names, and the contexts (including the project-specific con-

text, local context, and the documentation context) also do not offer

the relevant information about it. Thus, GTNM cannot correctly

suggest the subtokens “join in”. However, the name generated by

our model can also precisely describe the functionality of the target

method, which is also semantic consistent and acceptable.

Acronym. In method 3, the human-written name contains an

acronym for the specific entities, i.e., “du” for “definition use”, which

our model cannot correctly infer. Based on the given contexts,
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Figure 3: The method name length distribution and the exact

match accuracy of different name lengths

GTNM suggests a name that has a similar style with the project-

specific context, but fails to suggest the acronym for specific entity

names.

Different Word Orders. As shown in method 4, the subtokens in

the human-written name and GTNM suggested name are almost

the same (except for “removals” and “remove”), but the subtoken

orders are different. In this example, the different orders do not

affect the semantic of the method name, and both of the two names

express the same meaning. However, in other cases, the semantic of

the names with different subtoken orders might be different. 0.7%

of the wrong cases belong to this situation.

6.2 Length analysis

We further analyze the generated name length distribution and the

performance of GTNM for different name lengths. As shown in

Figure 3, the lengths of the method names (the number of subtokens

in the method name) mainly range from 2 to 3. Our model generates

fewer names of length 1, and generated more names with lengths 4

and 5. Among all the methods, only 13.78% of the names generated

by our model are shorter than the ground truth. We apply the

Wilcoxon Rank Sum Test (WRST) [44] to test whether the increase

in the method name length is statistically significant, and all the

p-values are less than 1e-5, which indicates a significant increase.

We also use Cliff’s Delta [29] to measure the effect size, and the

values are non-negligible. Thus, our model tends to suggest more

detailed names for the method. Besides, we also give the exact

match accuracy of different lengths. As the length increase, the

method naming task becomes harder. Even though our model can

still achieve more than 50% accuracy for the names of length 5.

6.3 Explainability Analysis

Lack of explainability is an important concern in many complex

AI/ML models in SE [35, 40]. It is crucial to ensure that the model

is learned correctly and the logic behind the model is reasonable,

which is also important for method name recommendation task.

In this section, we analyze the explainability of GTNM. We em-

ploy model’s confidence about its prediction to decide whether to

accept the model’s recommendation. Prediction Confidence Score

(PCS) [47] which depicts the probability difference between the two

classes with the highest probabilities is a measure for evaluating

model’s confidence. In our model, the Pearson Correlation Score

between PCS and F1-score of the generated names is 0.612 and

p-value <0.05, demonstrating that the correctness of the generated

name is closely related to the model’s confidence about its predic-

tion. Thus, users can decide whether to accept the generated names

depending on the case’s error tolerance and the model’s confidence.

6.4 Threats to Validity

Threats to external validity relate to the quality of the dataset

we used and the generalizability of our results. We evaluate our

approach on the Java dataset, which is a benchmark dataset for

method name suggestion, and has been used in previous work

[6, 7, 34]. All of the programs in the dataset are collected from top-

ranked and popular GitHub repositories. Thus, most-of-the-names

are expected consistent. However, there still exist a few cases that

the name is inconsistent as shown in section 6.1. Besides, further

studies are also needed to validate and generalize our findings to

other programming languages. Furthermore, our case study is on a

small scale. More user evaluation is needed to confirm and improve

the usefulness of our model.

Threats to internal validity include the influence of the model

architectural choices and the hyper-parameters used in our model.

The hyper-parameters and architectural choices were obtained by a

mix of small-range random grid search and manual selection. Thus,

there is little threat to the hyper-parameter choosing, and there

might be room for further improvement. However, current settings

have achieved a considerable performance increase.

Threats to construct validity relate to the suitability of our eval-

uation measure. We adopted the measure used by the previous

method name recommendation work [5–7, 34], which measured

precision, recall, and F1 score over subtokens, and exact match

accuracy. This is based on the idea that the quality of the generated

method name is mostly dependant on the sub-words that were used

to compose it.

7 RELATEDWORK

7.1 Code Representation

Code representation is a hot research topic in both software en-

gineering and machine learning fields. Different neural network-

based approaches have been proposed for representing programs

as vectors, which can be divided into the following categories: (1)

source code token (subtoken) sequence - Using the source code

token sequence as input. (2) AST node sequence - Using the flat-

tened AST node sequence as input. (3) AST paths - Using a path

through the AST as input. (4) Graph - Extending ASTs through

adding edges to build the graph as input. (5) Program entities -

Using tokens in program entities’ names. These learned program

vectors then can be used for various SE tasks, such as code sum-

marization [19, 43], method name recommendation [7, 34], code

clone detection [33, 46], code completion [21, 26, 27], etc. These

different approaches model the program from different aspects, for

example, ASTs can represent the structure and the syntax of the

source code better, while the graphs focus more on the data flow

and the semantic of the programs. For method name recommen-

dation, existing research mainly focuses on modeling the method
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body as token sequence [5, 34] or AST paths [6, 7], and then built an

RNN-based encode-decoder framework to generate the subtokens

of the method name.

7.2 Neural Machine Translation

Neural Machine Translation (NMT) [45] is an end-to-end learning

approach for automated translation. In recent years work of NMT

is largely based on encoder-decoder architecture [11], where the

encoder maps an input sequence of words 𝑥 = (𝑥1, ..., 𝑥𝑛) to a se-
quence of continuous representations 𝑧 = (𝑧1, ..., 𝑧𝑛). Given 𝑧, the
decoder then generates a sequence of output words 𝑦 = (𝑦1, ..., 𝑦𝑚)

one token at a time, hence modeling the conditional probability:

𝑝 (𝑦1, ..., 𝑦𝑚 |𝑥1, ..., 𝑥𝑛). The encoder-decoder architecture has been
applied across many SE seq2seq tasks, including code summariza-

tion [5, 19], method name recommendation [7, 34], code generation

[37, 43], program translation [14], etc. Different neural networks

can be used in the encoder and decoder. Code2seq [6] employs a

bi-directional LSTM to encode the AST paths then averages the

representations of all the paths as the final representation of the

program encoder, and employs another LSTM as the decoder to

generate the output (method name or code summarization). Hu

et al. [19] use RNN for both encoder and decoder for code comment

generation task. Allamanis et al. [5] employ CNN to encode the

code snippet and use GRU as decoder to generate the tokens of the

method name. Fernandes et al. [15] employ GNN as the encoder and

LSTM as the decoder for a range of summarization tasks. Ahmad

et al. [3] use transformer network for both the encoder and decoder

in code summarization task.

7.3 Method Name Recommendation

Recommending meaningful and consistent method names is impor-

tant for ensuring readability and maintainability of programs. Many

approaches have been introduced to suggest succinct names for

methods [5, 7, 34], where different model architectures and method

contexts are considered. In this section, we summarize related work

on method name recommendation from the following two aspects.

7.3.1 Models. Suzuki et al. [38] proposed an N-gram based ap-

proach to evaluate the comprehensibility of method names and

suggest comprehensible method names. Liu et al. [28] follow an

information retrieval (IR) method with the motivation that two

methods with similar bodies should have similar names. They use

paragraph Vector and Convolutional Neural Networks to produce

the vector representations of method names and bodies, respec-

tively. They compared the similarity of the names retrieved from

the method body vector space and the method name vector space

to identify the inconsistent method names. For the inconsistent

names, they use the names of methods whose bodies are similar

to the body of the input method to suggest the new method name.

However, methods with the same bodies can still have different

names since they are in different projects and are under different

contexts. Besides, the IR-based approach cannot generate a new

name that it has not seen before. Another kind of researches based

on NMT models, where encoder-decoder framework is used to en-

code the method bodies and generate the method names [5, 7, 34].

Allamanis et al. [5] built a convolutional attentional network to

extract local features of the subtoken sequence from the method

body, and then use these features to suggest names for methods.

Alon et al. [7] design attention-based neural network to encode

the AST paths into vectors, and based on the path representation

to make predictions on the method’s name. Zügner et al. [48] pro-

posed Code Transformer, a Transformer-based language-agnostic

code representation model. They combined distances computed on

structure and context in the self-attention operation, which can

learn jointly from the structure and context of programs relying on

language-agnostic features. They applied their representations to

the task of method name suggestion. Nguyen et al. [34] proposed an

RNN-based seq2seq approach to recommend method names and to

detect method name inconsistencies. They take the program entities

in the method body and enclosing class name as the input. Li et al.

[24] also developed an RNN-based seq2seq approach DeepName

for method name consistency checking and suggestion, which ex-

tended the contexts by considering the internal context, the caller

and callee contexts, sibling context, and enclosing context.

7.3.2 Method Contexts. Different method contexts are taken into

account for method name recommendation. Most of the research

only focused on exploiting the features from the method body,

where the token sequences or ASTs of the method body are taken

as the inputs. Allamanis et al. [5] considered the token sequence

from the method body and built a convolutional attentional net-

work to extract the features from the context. Alon et al. [7], Alon

et al. [6], Zügner et al. [48], and Peng et al. [36] considered the AST

paths extracted from the method body as the context, and made

predictions on the method’s name based on the path representation.

In addition to the data from the method body, many research began

to include the information from a wide range of contexts. Nguyen

et al. [34] took the program entities in the method body and en-

closing class name as the input. Wang et al. [42] also considered

other methods in the project that have call relations with the target

method. Li et al. [24] further extended the contexts by considering

the internal context, the caller and callee contexts, sibling context,

and enclosing context. Inspired by these approaches, we further

considered the nested scopes of the project and the documentation

of the method by extracting the project-specific and documentation

context, which can help for suggesting accurate method names.

8 CONCLUSION

In this paper, we propose GTNM, a global method name suggestion

approach, which considers contexts of different levels, including

local context, project-specific context, and the documentation of the

target method. We employ a transformer-based seq2seq framework

to generate the method names, which uses the attention mecha-

nism to allow the model attending to different level contexts when

generating the names. The experimental results on Java methods

show that our model has a substantial improvement over baseline

models.
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